

Home Search Collections Journals About Contact us My IOPscience

Resistivity and magnetoresistance studies on $RCoGe_3$ (R = La, Ce) compounds

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 1315

(http://iopscience.iop.org/0953-8984/12/7/314)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.218 The article was downloaded on 15/05/2010 at 20:05

Please note that terms and conditions apply.

Resistivity and magnetoresistance studies on RCoGe₃ (**R** = La, Ce) compounds

A Das†§ and A K Nigam‡

† Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India

‡ Low Temperature Physics, Tata Institute of Fundamental Research, Colaba, Mumbai 400 005, India

E-mail: adas@apsara.barc.ernet.in

Received 22 July 1999, in final form 15 November 1999

Abstract. Resistivity (ρ) and magnetoresistance ($\Delta \rho / \rho(0)$) have been measured for polycrystalline LaCoGe₃ and CeCoGe₃ compounds. The temperature dependence of ρ for the La compound is described by $\rho \propto T^3$ for $T \ll \vartheta_D$ and $\propto T$ at high temperatures. At 4.5 K a significantly large $\Delta \rho / \rho(0)(\sim 1)$ is observed. In CeCoGe₃ $\rho(T)$ exhibits a sharp drop below the magnetic ordering temperature, 21 K. In the antiferromagnetic region between 4 and 16 K it follows a quadratic temperature dependence. The magnetic contribution to resistivity, ρ_m , exhibits a maximum at ~125 K above which it decreases following a logarithmic temperature dependence. The magnetoresistance remains positive for temperatures between 4.5 and 30 K but shows field induced transitions at ~7 kOe and ~28 kOe.

1. Introduction


Tetragonal systems with ThCr₂Si₂ structure have been a subject of extensive investigation [1]. Compounds with similar structure but of lower symmetry, i.e. BaNiSn₃-type structure also are found to exhibit a wide variety of behaviour but are less studied. CeFeGe₃ is a non-magnetic compound with high Kondo temperature [2]. CeNiGe₃ exhibits magnetic ordering below 4.2 K [3]. CeCoSi₃ is a superconductor with $T_C \sim 1.4$ K [4]. CeCoGe₃ is reported be a heavy fermion system and also exhibits complex temperature and field induced magnetic behaviour below 21 K [5]. To shed more light on the various magnetic phases we have carried out resistivity and magnetoresistance measurements on LaCoGe₃ and CeCoGe₃, the results of which are reported here.

2. Experimental details

The samples were prepared by arc melting the stoichiometric amounts of the constituent elements in Ti-gettered argon atmosphere. The buttons were then chill cast drawn in the form of rods for transport measurements. These were sealed in an evacuated quartz tube and annealed at 800 °C for one week. X-ray powder diffraction measurements reveal them to be single phase with a BaNiSn₃-type structure (space group *I4mm*). The tetragonal cell parameters calculated using a least squares fit method are a = 4.346 Å and c = 9.870 Å

0953-8984/00/071315+07\$30.00 © 2000 IOP Publishing Ltd

[§] Corresponding author.

Figure 1. The temperature dependence of normalized resistance, r(= R(T)/R(296 K)) of LaCoGe₃. The continuous line is the fit to the equation discussed in the text.

for LaCoGe₃ and a = 4.314 Å and c = 9.815 Å for CeCoGe₃, in agreement with reported values [5]. Dc resistivity and magnetoresistance measurements were measured using a standard four-probe method.

3. Results and discussion

3.1. $LaCoGe_3$

The value of $\rho(296 \text{ K})$ is 57 $\mu\Omega$ cm and the residual resistivity ratio (RRR), R(296 K)/R(4.2 K) is found to be 150. The variation of normalized resistance, r(=R(T)/R(296 K)) as a function of temperature is shown in figure 1. The temperature dependence of r exhibits a normal metallic behaviour as the temperature is reduced. It does not exhibit either magnetic or superconducting transition down to 4.2 K. The value of $\rho(296 \text{ K})$ is nearly half the reported value of $\sim 100 \,\mu\Omega$ cm in LaCoSi₃ with similar structure [4]. This large value of RRR for a polycrystalline sample suggests a very ordered system. The temperature dependence of the resistivity could not be fitted to a Bloch–Grüneisen relation where for $T \ll \theta_D$, $\rho \propto T^5$. Instead in the region between 4.2 and 300 K the temperature dependence of the resistivity could be fitted to an expression of the form

$$\rho(T) = \rho(0) + c_1 \left(\frac{T}{\theta_D}\right)^3 \int_0^{\theta_D/T} \frac{x^3 \, \mathrm{d}x}{(1 - \mathrm{e}^{-x})(\mathrm{e}^x - 1)^3}$$

where $\rho(0)$ is the residual resistivity, the second term is due to the electron–phonon scattering and θ_D is the Debye temperature. The continuous line through the data points in figure 1 indicate the fitted line. The fit holds good except for the region T > 250 K where differences

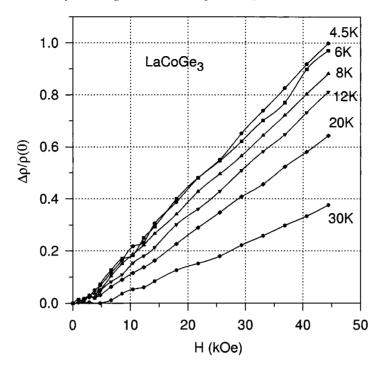


Figure 2. The magnetic field dependence of the magnetoresistance of $LaCoGe_3$ at various temperatures.

appear between the fitted and observed values. For $T \ll \theta_D$, $\rho \propto T^3$. This form of temperature dependence has also been observed in the case of La₂Rh₃Si₅ [6] and attributed to Wilson's s–d scattering model. θ_D has been used as a parameter. The value of θ_D (= 360 K) obtained from the fit is in good agreement with that obtained from independent specific heat measurements [5]. Its value is larger than that reported (=298 K) in the case of LaFeGe₃ [2].

The magnetoresistance MR, $\Delta \rho / \rho(0) (= [\rho(H) - \rho(0)] / \rho(0))$ as a function of magnetic field at various temperatures is shown in figure 2. It is positive at all temperatures between 4.2 and 30 K and its magnitude at a given field decreases with increase in temperature. It varies nearly linearly with field at all temperatures. The magnitude of MR at 4.2 K and 45 kOe is almost 1.0. This denotes a significantly large value for a polycrystalline sample. In comparison for LaCu₆ $\Delta \rho / \rho(0)$ is only ~0.11 at a similar temperature and field [7]. The large value for $\Delta \rho / \rho(0)$ could possibly be due to the low value of $\rho(4.2 \text{ K})$. It is found that the temperature dependence of MR is in agreement with the Kohler law i.e. $\Delta \rho / \rho(0) = f(H / \rho(0))$. In figure 3 we show the plot of $\Delta \rho / \rho(0)$ against $H / \rho(0)$. It is observed that all the data points between 4.2 and 30 K fall on a single curve. The validity of Kohler's plot over a wide temperature range indicates the absence of spin dependent scattering.

3.2. CeCoGe₃

The resistivity ρ , of CeCoGe₃ at 300 K is 127 $\mu\Omega$ cm and RRR ~30. The temperature variation of resistivity is shown in figure 4. The resistivity decreases as the temperature is lowered. However, the variation in ρ between 300 and 150 K is only ~15 $\mu\Omega$ cm as compared to a large decrease of ~100 $\mu\Omega$ cm below 100 K. There is a marked change in the behaviour of ρ at ~21 K

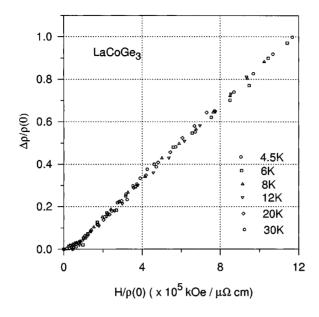
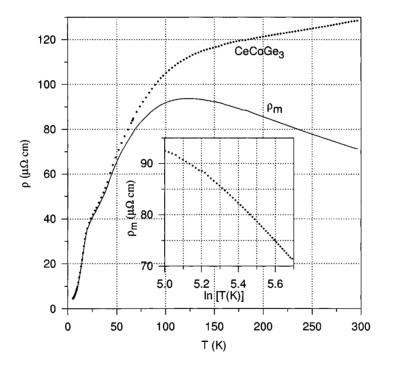
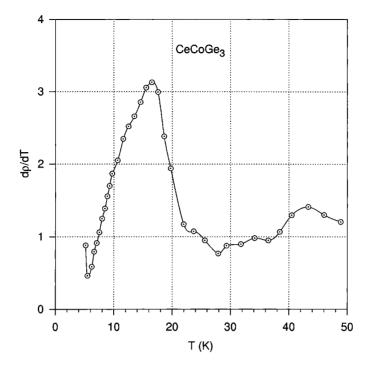




Figure 3. The magnetoresistance as a function of $H/\rho(0)$ of LaCoGe₃ at various temperatures.

Figure 4. The temperature dependence of resistivity of CeCoGe₃ and ρ_m (= ρ (CeCoGe₃) $-\rho$ (LaCoGe₃)). The inset shows the logarithmic temperature variation of ρ_m .

indicating the transition to a magnetically ordered state below this temperature. The behaviour of $d\rho/dT$ (figure 5) gives a better picture. It exhibits a maximum at 16.5 K and is identified with the antiferromagnetic transition. This is in agreement with the reported magnetic phase diagram

Figure 5. The temperature variation of $d\rho/dT$ of CeCoGe₃.

[5], where it is proposed that the system in zero magnetic field undergoes a paramagnetic to a ferrimagnetic transition at 21 K and subsequently to an antiferromagnetic phase below 16 K. However, from the derivative plot the para to ferrimagnetic transition is not very clear: $d\rho/dT$ continuously increases below 22 K. It needs to be pointed out that no negative $d\rho/dT$ in the temperature region around the ordering temperature, 16.5 K is observed. Normally the onset of commensurate antiferromagnetic order is associated with an increase in ρ due to the magnetic superzone gap effect [8, 9], which results in negative $d\rho/dT$ at the T_N . Its absence here could be a result of either the formation of intervening ferrimagnetic state between para and AF or the absence of the gap itself. Below T_N , $d\rho/dT$ steadily decreases due to the increase in AF order. Between 4.5 and 16 K $\rho(T)$ exhibits a quadratic temperature dependence of the form $\rho(T) = \rho(0) + AT^2$ where $\rho(0) = 1 \ \mu\Omega$ cm and $A = 0.096 \ \mu\Omega$ cm K⁻². The value of A is of the same magnitude as reported in the case of α -Mn, $A = 0.11 \ \mu\Omega$ cm K⁻² [10]. The larger value of $\rho(0)$ as compared to LaCoGe₃ is attributed to the contribution from antiferromagnetic coupling of magnetic moments. For T > 21 K the difference in the variation of ρ between the normal metallic behaviour in LaCoGe₃ and CeCoGe₃ is attributed to the magnetic contribution to ρ in CeCoGe₃. Assuming that the phonon contribution is similar in both the compounds we estimate the magnetic contribution to ρ in CeCoGe₃, $\rho_m (= \rho (CeCoGe_3) - \rho (LaCoGe_3))$. ρ_m exhibits a broad maximum at ~ 125 K above which it decreases. It follows a $- \ln T$ behaviour for T > 170 K (shown in the inset of figure 4). The earlier report of resistivity studies on this compound shows a linear variation of R(T) for 21 K < T < 100 K [5]. Our results clearly show the highly non-linear behaviour of ρ above the magnetic ordering temperature. The maximum in ρ_m at 125 K is understood to be a result of the Kondo effect influenced by crystal field effects as discussed by Cornut and Coqblin [11]. The temperature at which ρ_m is a maximum is an indication of the energy difference between the crystal field split energy



Figure 6. The magnetic field variation of magnetoresistance of CeCoGe₃ at various temperatures.

levels. Our observations indicate that the lowest excited crystal field level is ~100 K and the value is of the same order as deduced from zero-field heat capacity results [5]. It is of interest to note that the high temperature resistivity behaviours are similar in the case of CeFeGe₃ [2], CeNiGe₃ [3] and the present compound, irrespective of the ground state. The maximum in ρ_m occurs at ~100 K suggesting similar CEF splitting in these compounds.

The variation of $\Delta \rho / \rho(0)$ with magnetic field at various temperatures is shown in figure 6. It is positive for all temperatures between 4.2 and 30 K but shows two field induced transitions. The first transition at $H \sim 7$ kOe results in increase in resistance whereas the second transition at $H \sim 28$ kOe is accompanied by a significant decrease in resistance (~0.20). Knowing the magnetic phase diagram [5] the various transitions are identified with three distinct regions. For H < 7 kOe in the antiferromagnetic state $\Delta \rho / \rho(0)$ varies as H^n with n > 1. As temperature is increased this transition disappears rapidly. Between 10 and 28 kOe the variation is nearly linear in the state where the magnetic state is a mixture of AF and ferrimagnetic. For H > 29 kOe the slope of $\Delta \rho / \rho(0)$ changes from positive to negative indicating the transition to a ferromagnetic state. The field, H_m at which the maximum in $\Delta \rho / \rho(0)$ occurs shifts to higher fields as the temperature is increased from 4.2 to 12 K. The observed behaviour of the shift of H_m to higher field as temperature is increased is similar to that reported from the magnetization measurements [5]. This is different from similar metamagnetic behaviour observed in CeRh₂Ge₂ where the field H_m is found to shift to lower fields as the transition temperature is approached [12].

4. Conclusions

The temperature dependence of resistivity for LaCoGe₃ is described by $\rho \propto T^3$ for $T \ll \vartheta_D$ and $\propto T$ at high temperatures. The magnetoresistance $\Delta \rho / \rho(0)$ at 4.5 K exhibits larger values than at higher temperatures and follows Kohler's law indicating the absence of spin dependent scattering. For CeCoGe₃, $\rho(T)$ exhibits a magnetic ordering below 21 K. Below the ordering temperature a quadratic temperature dependence is followed. The magnetic contribution to resistivity, ρ_m exhibits a maximum at ~125 K above which it follows a $-\ln T$ behaviour indicating the influence of crystal fields on the Kondo effect. The variation of $\Delta \rho / \rho(0)$ as a function of *H* indicates transitions at 7 and 28 kOe.

References

- Szytula A and Leciejewicz J 1989 Handbook on the Physics and Chemistry of Rare Earths ed K A Gschneidner Jr and L Erying (Amsterdam: Elsevier)
- [2] Yamamoto H, Ishikawa M, Hasegawa K and Sakurai J 1995 Phys. Rev. B 52 10136
- [3] Das A, Menon L, Nigam A K and Malik S K 1997 *Physica* B 230–232 165
- [4] Haen P, Lejay P, Chevalier B, Lloret B, Etournean J and Seva M 1985 J. Less-Common Met. 110 321
- [5] Pecharsky V K, Hyan D-B and Gschneidner K A Jr 1993 Phys. Rev. B 47 11 839
- [6] Patil N G, Ghosh K and Ramakrishnan S 1995 Phys. Rev. B 52 9679
- [7] Das A and Nigam A K 1996 J. Phys.: Condens. Matter 8 4775
- [8] Mackintosh A R 1962 Phys. Rev. Lett. 9 90
- [9] Elliot J R and Wedgwood F A 1963 Proc. Phys. Soc. 81 846
- [10] Murayama S and Nagasawa H 1977 J. Phys. Soc. Japan 43 1217
- [11] Cornut B and Coqblin B 1972 Phys. Rev. B 5 4541
- [12] Das A, Nigam A K, Nagarajan R and Gupta L C 1996 unpublished